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Abstract

In certain field applications involving the repair or replacement of structural members, the knowledge of the tensile
forces in tension members may be critical in the selection of the retrofit or rehabilitation process. To date, several meth-
ods have been presented to estimate in situ tensile forces using static and/or dynamic responses of the tension members.
However, each and every one of these methods has its disadvantages as well as advantages in its procedures, level of
accuracy, and equipment requirements. This paper presents a practical method to identify the tensile force in a high-
tension bar using the changes in the modal sensitivities. The methodology can identify not only the tensile force but
also other related parameters such as the magnitude of end constraint. The methodology utilizes the sensitivity relation-
ship between the natural frequencies, the structural parameters, and the tensile force in the member. In this paper, the
basic elements of the approach are summarized and the proposed method is validated using both numerical and exper-
imental data. Also, the impact of model uncertainty to the performance of the parameter identification is investigated.
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1. Introduction

High-tension bars are utilized in the construction of various civil engineering structures including
bridges, buildings, and other critical structures. Often for some structures, accurately estimating the tensile
force in a member may be extremely important. For example, the restoration, structural strengthening, as
well as monitoring of ancient buildings requires the assessment of the forces acting in the tie-bars used to
support masonry arches and vaults (Bati and Tonietti, 2001). Therefore, a practical and reliable method-
ology that can be used to accurately and rapidly assess the tensile forces in such members is of fundamental
importance.

To date, several methodologies for determining the tensile force in high-tension members have been
proposed in the literature. Shinke et al. (1980) presented a vibration method that measures the tensile
force using natural frequencies. While their method is simple and speedy, it has a limitation to the mem-
bers which is not slender or not sufficiently tensioned. Later Hiroshi et al. (1996) supplemented Shinke
et al.�s method with a formula for not slender members. Croci et al. (1988) proposed a static procedure
using vertical displacements and the strains. However, the method uses vertical displacements due to pro-
gressively increasing loads applied at different points, which are not easily applicable to real structures, of
the member. Kyska et al. (1991) proposed a method that utilizes the vibrating chord theory for estimating
the tensile force. The method obtains the tensile force from the member�s natural frequency, the mass and
the real length. In their study, the method has been successfully applied to relatively short cables with
simple anchoring devices. However, as the anchorage devices become complicated, determining the mem-
ber�s real vibrating length is difficult. Also, their method has limitation in applying to other tension mem-
bers with bending stiffness due to the anchoring device and/or the section. Some researchers have
proposed combination methods that synthesize other information such as experimental techniques and
static measurements with frequency information. Blasi and Sorace (1994) proposed a method that utilizes
the vertical displacement and the fundamental frequency. Their method can be applied to a member with
unknown boundary conditions by adopting system identification procedures (Sorenson, 1980). Casas
(1994) presented a least square minimization approach that combines frequency information with other
experimental techniques (strain gauges, pressure in tensioning jacks). Recently, Bati and Tonietti (2001)
proposed a static procedure for estimating the tensile force in a metallic tie-rod inserted into a masonry
building.

Overall, even with the cumulative efforts presented by many researchers, each and every one of the pro-
posed methods continues to exhibit one or more of the following shortcomings. First, more than one exper-
imental technique is required to yield acceptable estimations of the tensile force (Blasi and Sorace, 1994;
Casas, 1994). Second, identification of other parameters, such as the magnitudes of constraints (which is
essential for appropriate modeling of some tensile members) are not considered in the formulation of
the tensile force determination (Shinke et al., 1980; Croci et al., 1988; Kyska et al., 1991). Third, the prac-
tical application of these methods is not computationally straightforward (Croci et al., 1988; Bati and
Tonietti, 2001). Finally, in the dynamic-response-based methods, other useful information, such as
frequencies of higher modes, is discarded (Blasi and Sorace, 1994).

In this paper, a straightforward and practical methodology for estimating the tensile force in a
tension member is presented. The proposed methodology cannot only identify the tensile force but
also identify other parameters such as the magnitude of the end constraint. The sensitivity relationship
between the parameters, including the axial force and the stiffness parameters, and the natural frequen-
cies is derived from an established sensitivity approach to system identification (Stubbs and Osegueda,
1990; Choi et al., 2004). The proposed sensitivity method is first validated using numerical data from
a beam structure. Then, the impact of model uncertainty to the performance of the parameter identifi-
cation is investigated. Finally, experimental verification is performed using laboratory test data from a
bar.
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2. Theory

Consider a bar member subjected to an axial load P. Suppose that the member has r elements with q

discrete masses. Let ki (i = 1, . . . ,n) represent the identifiable eigenvalues of a structure; let mn

(n = 1, . . . ,q) represent the nth discrete mass of the member; and let kj (j = 1, . . . , r) represent the stiffness
of the jth structural element. If we assume that the mass of bar remains constant, then
ki ¼ kiðk1; . . . ; kr; m1; . . . ;mq; P Þ ð1Þ

and
dki ¼
Xr

j¼1

oki

okj
dkj þ

oki

oP
dP ð2Þ
where dki is the variation in the ith eigenvalue, dkj is the variation in the stiffness of the jth element, and dP

is the variation in the axial load P.
Dividing both sides of Eq. (2) by ki and setting Zi = dki/ki, then
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If Ki and Mi are, respectively, the ith modal stiffness and the ith modal mass, substituting ki = Ki/Mi into
Eq. (3) and simplifying yields
Zi ¼
dki

ki
¼
Xr

j¼1

F ijaj þ Hiw ð4Þ
where F ij ¼ kj

Ki

oKi
okj

, H i ¼ P
Ki

oKi
oP , aj ¼ dkj

kj
, and w ¼ dP

P . If we define
Z ¼ fz1; z2; . . . ; zng; a ¼ fa1; a2; . . . ; arg; w ¼ fw1g ð5Þ

and
F ¼ bF ijc H ¼ fH 1;H 2; . . . ;Hng ð6Þ

where F is n · r matrix and H is n · 1 matrix, Eq. (4) can be written as
Z ¼ F aþ Hw ð7Þ

Note that Eq. (7) is the basic sensitivity equation.

If the basic equation is rewritten in a partitioned form as
Z ¼ F aþ Hw ¼ ½F jH �
a

w

� �
¼ Ac ð8Þ
where F is an n · r stiffness sensitivity matrix determined from a theoretical model of the bar, H is an n · 1
axial force sensitivity matrix determined from a theoretical model of the bar, Z is an n · 1 matrix containing
the fractional changes in eigenvalues between the two systems, a is a r · 1 matrix containing unknown stiff-
ness adjustments, and w is a scalar containing unknown axial force adjustments. Then stiffness and axial
force adjustments can be determined from the equation
c ¼
a

w

� �
¼ A�1Z ð9Þ
where A�1 is the generalized inverse.
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For steel bars, the geometric parameters can be easily assessed and the material�s elastic properties can be
evaluated or estimated with less uncertainty. On the other hand, the magnitude of the end constraint, which
is essential for appropriate modeling in assessing the member�s axial force, is very difficult to identify. How-
ever, modeling the constraint as an elastic spring and applying Eq. (9) can give the way to identify the con-
straint level with only a few numbers of measured frequencies available in field application.

Recall that
Z ¼ Ac ð10Þ

In order to generate the elements of the sensitivity matrix A with the limited number of frequencies, the
following procedure is used (Fig. 1):

(1) Assume an initial model of the structure to be identified and compute ki (i = 1, . . . ,n) for that
structure;

(2) Set a single ck = c and set all other cj = 0 (i.e., j 5 k);
(3) Compute k�i (i = 1, . . . ,n) of the structure to be identified;
(4) Compute eigenvalue sensitivities Zi = dki/ki (i = 1, . . . ,n) where dki ¼ k�i � ki;
(5) Compute the ikth element of the A matrix using the result Aik = Zi/c; and
(6) Repeat for k = 1, . . . , r.
Build the initial FE model

Compute λ i, for i = 1,..., n
and set k =1

Set γk = γ and 
all other γj = 0 for j ≠ k

Compute λ i
*

for i = 1, …, n

Compute Zi = δλi/λi

for i = 1, …, n

Compute Aik = Zi/γ
for i = 1, …, n

k = r 

End 

yes 

no

k = k +1 

Fig. 1. A procedure for building the sensitivity matrix.
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Now having been proposed a method to compute the elements of the sensitivity matrix A, the general
identification procedure can be accomplished using the following steps:

(1) Develop an initial FE model for the target member;
(2) Compute the sensitivity matrix A from the FE model;
(3) Compute the fractional changes in eigenvalues, Z, between the FE model and the target member;
(4) Solve Eq. (9) for c using generalized inverse technique;
(5) Update the spring stiffness and axial force of the FE model using the relationships k�j ¼ kjð1þ ajÞ and

P* = P(1 + w); and
(6) Repeat Steps (2)–(5) until convergence (i.e., aj � 0 and w � 0).
3. Numerical verification

The feasibility of the proposed algorithm is first examined via a numerical example of a bar member sub-
jected to an axial force as shown in Fig. 2. The 2 cm diameter bar is supported by rotational springs at both
ends that represent the constraint effect by anchoring devices. The material properties for the target struc-
ture are the mass density of 7850 kg/m3 and the elastic modulus of 1.9 · 104 kN/cm2. Two-node cubic beam
elements are used to model the example structure. The model has 15 elements and 16 nodes. The modal
parameters including the natural frequencies and the corresponding mode shapes are obtained via free
vibration analysis using SAP2000� (1998).

Table 1 shows the parametric case studies conducted here, which are: slenderness ratio (length/(radius of
gyration)) of 200 and 1000 (short and long bars); rotation spring constant of 10 N m and 1000 N m (low
and high constraint effects); and tensile force of 10 kN and 100 kN (low and high tensile forces). Using
the combinations of the stated parameters, total of 8 target structures are considered. Note that to simplify
the problem the spring constants for both ends are assumed to be identical for target structures 1 through 8,
P P

L

d = 2.0 cm

Fig. 2. A beam structure with end rotational springs.

Table 1
Parameters for the target structures

Target structure Spring constant (N m) Slenderness ratio (L/r) Tensile force (kN)

1 10 200 10
2 100
3 1000 10
4 100
5 1000 200 10
6 100
7 1000 10
8 100
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which is a reasonable hypothesis for most cases (Blasi and Sorace, 1994). To investigate the robustness of
the presented parameter identification technique, the following initial values of the applied tensile force and
the rotational spring constant are assumed as a starting point:

(1) Case A—the initial assumed values are 10% less than the true values;
(2) Case B—the initial assumed values are 50% less than the true values;
(3) Case C—the initial assumed values are 300% higher than the true values.

With the obtained natural frequencies, the identification procedure consists of the following three steps:
(1) extract natural frequencies from the initial finite element (FE) model, (2) generate stiffness and force
sensitivities using the FE model, and (3) update the parameters of the FE model using the procedure out-
lined in the preceding section. In this example, the parameters to be identified are the tensile force applied to
the structure and the spring constants of the end rotational springs. The other sectional and material prop-
erties of the initial model are assumed to be identical to the target structure. In the identification, three nat-
ural frequencies are utilized and the threshold relative error used is 10�4%. Thus, when the relative error
between the frequencies or the identified parameters of the two consecutive steps is less than 10�4%, the
iteration is stopped. The convergence of the identification scheme is demonstrated in Tables 2–4 for Cases
1A, 1B, and 1C, respectively. Here, ‘‘1A’’ means that Target structure 1 is identified with 10% less initial
values (Case A). In the tables, it can be seen that after just two iterations the differences in the correspond-
ing three frequencies of the identified structure and the target structures are close to 0%.
Table 2
Convergency of the proposed method for Case 1A

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Initial Final

1 49.087 50.118 50.117 50.117 2.06 0.00
2 165.752 166.974 166.973 166.973 0.73 0.00
3 358.188 359.457 359.457 359.457 0.35 0.00

Table 4
Convergency of the proposed method for Case 1C

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Initial Final

1 67.585 50.153 50.117 50.117 34.9 0.00
2 189.790 166.984 166.973 166.973 13.7 0.00
3 383.960 359.461 359.456 359.457 6.78 0.00

Table 3
Convergency of the proposed method for Case 1B

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Initial Final

1 44.734 50.132 50.117 50.117 10.7 0.00
2 160.775 166.978 166.973 166.973 3.71 0.00
3 353.070 359.459 359.457 359.457 1.78 0.00



Table 5
Identified parameters for the beam structure

Case Number of iterations Spring constants (N m) Tensile force (kN)

Target Identified Error (%) Target Identified Error (%)

1A 2 10 10.03 0.3 10 10.00 0.0
1B 2 9.98 0.2 10 10.00 0.0
1C 2 9.99 0.1 10 10.00 0.0
2A 2 10.00 0.0 100 100.0 0.0
2B 2 10.00 0.0 100 100.0 0.0
2C 2 10.00 0.0 100 100.0 0.0
3A 2 10.00 0.0 10 10.00 0.0
3B 2 10.00 0.0 10 10.00 0.0
3C 2 10.00 0.0 10 10.00 0.0
4A 2 10.00 0.0 100 100.0 0.0
4B 3 10.00 0.0 100 100.0 0.0
4C 2 10.00 0.0 100 100.0 0.0
5A 2 1000 1000.0 0.0 10 10.00 0.0
5B 3 1000.0 0.0 10 10.00 0.0
5C 3 1000.0 0.0 10 10.00 0.0
6A 2 1000.0 0.0 100 100.0 0.0
6B 3 1000.0 0.0 100 100.0 0.0
6C 3 1000.0 0.0 100 100.0 0.0
7A 2 1000.0 0.0 10 10.00 0.0
7B 3 998.0 0.2 10 10.00 0.0
7C 3 999.0 0.1 10 10.00 0.0
8A 2 1000.0 0.0 100 100.0 0.0
8B 3 1000.0 0.0 100 100.0 0.0
8C 3 999.0 0.1 100 100.0 0.0
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The results of the parameter identification for eight different target properties are summarized in Table 5.
In the table, it is observed that the spring constants and the applied tensile force for all target structures are
successfully identified in only a few iterations. Thus, it shows that the proposed identification scheme is
independent of the assumed initial properties.
4. Impact of model uncertainty

In field applications, it is expected that there would be some deviations due to uncertainties in measure-
ment data and structural properties (i.e., material and sectional properties). In this section, the impact of
the uncertainties to the parameter identification is assessed using the same numerical model utilized in
the experimental study, i.e., Section 5. The tension bar is 3.8 m long with 1.8 cm diameter. The applied ten-
sile force and the end-spring constants are arbitrarily chosen as 25 kN and 5 kN m, respectively. Two mod-
el-uncertainty types that may exist in the bar model are selected. The first type is the uncertainty associated
with the identified natural frequencies. This type of uncertainty may arise when a true natural frequency
locates between two frequency responses. The second type selected is the uncertainty in the structural
parameters of the bar. This may include (1) errors in the stiffness parameters; (2) errors in the mass param-
eters; and (3) errors in the damping parameters.

The first uncertainty is simulated by considering the frequency resolution in real applications. In this
study, 0.25 Hz, which is the same frequency resolution in the experimental study, is adopted for the Df.
Using the frequency resolution, two different uncertainty cases, Cases U1 and U2, are simulated as follows:



Table 6
Identified parameters for the beam structure with model uncertainty

Case Simulated deviation (%) Spring constants (kN m) Tensile force (kN)

Frequency Stiffness Target Identified Error (%) Target Identified Error (%)

U0 0.0 0.0 5.00 5.00 0.0 25.0 25.0 0.0
U1 0.1 4.99 0.2 25.0 0.0
U2 0.8 5.39 7.8 24.8 0.8
U3 1.0 4.99 0.2 25.0 0.0
U4 10.0 5.39 7.8 24.8 0.8
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approximating the target natural frequencies to nearest frequency response values which are multiples of Df

(Case U1); and further adding +Df to the natural frequencies of Case U1 (Case U2).
The uncertainty in the structural parameters is simulated by adding small deviation to the stiffness of the

target structure. In this paper, among the stated uncertainties in the structural parameters, only the devi-
ation in the stiffness parameter is considered in the numerical study because: (1) the mass can be evaluated
with much less uncertainty; (2) the effect of the mass change to the vibration characteristics can be
effectively inferred from the effect of the stiffness change; and (3) the effect of the damping change to the
resonant frequencies is negligibly small in general. Two different uncertainty cases, Cases U3 and U4,
are simulated as follows: increasing the elastic modulus of the target structure by 1% (Case U3); increasing
the elastic modulus of the target structure by 10% (Case U4). Note that the 10% deviation is selected assum-
ing that the coefficient of variation (COV) of the elastic modulus is 0.05 (the maximum COV of the elastic
modulus from the literature (Galambos and Ravindra, 1978) is 0.06). Note also that, to simulate the real
applications, the frequencies utilized in the parameter identification are approximated to the nearest
frequency response values like Cases U1 and U2.

The parameter identifications were performed with 20% lower initial values than the true values, i.e.,
20 kN for the tensile force and 4 kN m for the rotational spring constants. The parameter identification re-
sults for Cases U0 through U4 are presented in Table 6. Note that Case U0 represents the case without
frequency or stiffness deviation. In the table, it can be seen that both the spring stiffness and the tensile force
are identified successfully when no deviation presents. With 0.1% deviation in the frequencies, i.e., Case U1,
small identification errors can be seen in the identified spring stiffness. In Case U2, the identification error
for the spring constant increases to 7.8% while the error for the tensile force stands at 0.8%. The same phe-
nomenon can be observed in Cases U3 and U4. Note that Cases U1 and U3 yield the same identification
results due to the frequency approximation process mentioned above. The same results are observed in
Cases U2 and U4 due to the same reason. The other notable observation is that 10% stiffness deviation,
i.e., Case U4, yields the same error as Case U2 when the deviation in the frequencies is 0.8%. This says that,
for tension members, the uncertainty in structural parameters has much smaller impact on the accuracy of
the parameter identification than the uncertainty in natural frequencies.
5. Experimental verification

In this section, the feasibility and practicality of the proposed scheme is further demonstrated using the
laboratory testing data from a high-tension bar. A laboratory dynamic testing is conducted on a high-
tension bar. Fig. 3 shows the high-tension bar utilized in the testing along with the supporting frame struc-
ture. The 1.8 cm diameter bar with the length of 3.8 m is pin-connected to the frame and subjected to the
tensile forces of 27.3 kN, 32.8 kN, and 41.0 kN designated here as Cases 1, 2, and 3, respectively.

Fixed response measurement testing with roving hammer impacts is performed to collect dynamic
response data. One accelerometer is glued to the bar and a total of 7 impact points are marked on the



Fig. 3. A high-tension bar used in the laboratory experiment.
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bar to insure the repeatability during the testing. The impact and sensor locations are depicted in Fig. 4.
Instrumentation used to conduct the modal test consists of an impact hammer, an ICP accelerometer,
an FFT analyzer, and a potable computer. Table 7 tabulates the instrumentation and test settings used
for the modal testing. Seven frequency response functions (FRFs) are measured for each case. Five impacts
are recorded at each point and an averaged FRF is computed for each impact point. A standard modal
analysis (Ewins, 1986) is performed on the collected data set of transfer functions and modal parameters
Fig. 4. Locations of the impact points and the accelerometer.

Table 7
Modal test parameters for the test

Parameter Setting Notes/Units

Sample frequency 100 Hz
Sample length 400 Samples per channel
Spectral resolution 0.25 Hz
Number of repetitions 5 Linear average
Channel gain Varied Set to maximize resolution
Trigger method + 18% hammer FS Pre-trigger save all channels
Accelerometer window Exponential 99% down at end
Hammer window Rectangular 7% window width
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for the structure are extracted. Table 8 presents the measured natural frequencies for the first three bending
modes for Cases 1 through 3, and the corresponding mode shapes are depicted in Fig. 5 for Case 1.

The same identification procedure as stated in the preceding section is used to identify unknown param-
eters. As a first step, an initial FE model is constructed. The FE model has 16 nodes and 15 cubic beam
elements. To investigate the boundary constraint effect as well as the tensile force applied, two identical
rotational springs are provided at both ends of the FE model like in Fig. 2. Thus, the parameters to be iden-
tified here are the tensile force and the rotational spring constant. In this case, however, since the bar is
connected to the frame with pins, it is anticipated that the predicted magnitude of the spring constants
should be small numbers. For all three cases, the initial tensile force and the spring constant are assumed
to be 30 kN and 10 N m, respectively. A relatively low initial value is selected for the end rotational spring
constant, because the bar is pin-connected to the frame as shown in Fig. 3. Other material properties as-
signed to the initial structure are the mass density (7850 kg/m3) and the elastic modulus (1.9 · 104

kN/cm2). The free-vibration analyses are performed using SAP2000� (1998).
Table 8
Natural frequencies of the high-tension bar

Frequency (Hz)

1st mode 2nd mode 3rd mode

Case 1 15.25 30.75 48.50
Case 2 17.00 33.75 53.25
Case 3 19.25 38.00 59.50

Fig. 5. Mode shapes of the high-tension bar.
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In the parameter identification exercise, three natural frequencies are utilized and the threshold relative
error used is selected to be 10�2%. Tables 9–11 show the convergence of the proposed method to the target
frequencies. Note that after three iterations the maximum difference between the frequency of the updated
FE model and the target structure is 2.08%. The results of the parameter identification for three different
target properties, the applied tensile forces, are summarized in Table 12. In the table, it can be seen that as
expected the identified spring constants are very small as expected. Although no measured values are pro-
vided for the spring constants, the table clearly shows that the identified spring constant increases as the
tensile force increases. This trend is reasonable since an increase in tensile force causes an increase in fric-
tional resistance at the pin connections. In the table, it is also observed that the maximum percentage error
between the identified and the target forces is 3.66% for Case 1. The difference between the identified and
the target values may be attributed to measurement noise, error in modal analysis, and/or other uncertain-
Table 10
Convergency of the proposed method for the high-tension bar (Case 2)

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Iteration 3 Initial Final

1 16.09 16.86 16.71 16.71 17.00 5.35 1.71
2 33.00 34.68 34.40 34.40 33.75 2.22 1.93
3 51.88 54.39 53.99 53.99 53.25 2.57 1.39

Table 9
Convergency of the proposed method for the high-tension bar (Case 1)

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Iteration 3 Initial Final

1 16.09 15.02 14.97 14.98 15.25 5.51 1.77
2 33.00 31.11 31.02 31.02 30.75 7.32 0.88
3 51.88 49.23 49.11 49.11 48.50 6.97 1.26

Table 11
Convergency of the proposed method for the high-tension bar (Case 3)

Mode Frequency of initial FE model Updated frequencies (Hz) Frequency of target structure Error (%)

Iteration 1 Iteration 2 Iteration 3 Initial Final

1 16.09 19.09 18.85 18.85 19.25 16.42 2.08
2 33.00 39.03 38.57 38.57 38.00 13.16 1.50
3 51.88 60.65 59.99 59.99 59.50 12.81 0.82

Table 12
Identified parameters for the high-tension bar

Case Number of iterations Spring constants (N m) Tensile force (kN)

Identified Target Identified Error (%)

1 3 0.20 27.3 26.3 3.66
2 3 0.28 32.8 31.9 2.74
3 3 0.93 41.0 41.2 0.49
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ties. One notable observation from the result is that as the magnitude of the applied force increases, the
relative error decreases.
6. Conclusions

In this paper, a sensitivity-based methodology for identifying the tensile force in structural members such
as high-tension bars was presented. The methodology utilized the dynamic sensitivity relationship between
the natural frequencies, the applied tensile force, and the stiffness properties of the member. The feasibility
of the methodology was demonstrated using simulated data from a pin-pined beam with rotational springs.
The practicality of the method was demonstrated with experimental data obtained from a high-tension bar.

From the numerical and experimental studies, the following conclusions are drawn:

1. The numerical simulation of a bar reveals that the proposed methodology can identify applied tensile
forces and constraint parameters with negligible errors;

2. The model uncertainty study shows that the identified tensile force is less vulnerable than the identified
end constraint effects to the uncertainty associated with natural frequency and structural parameters;

3. The model uncertainty study reveals that, for tension members, the uncertainty in structural parameters
has less impact on the accuracy of the parameter identification than the uncertainty in natural
frequencies;

4. The experimental study shows that the proposed methodology can identify applied tensile forces with
very small errors; and

5. From the numerical and the experimental studies, the proposed sensitivity-based method is a feasible
approach to identify the resulting tensile force and the end constraint effects in tensionally loaded
members.
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